Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment: Iii. a Parameter Study

نویسنده

  • Konstantinos Tassis
چکیده

In two previous papers we formulated and solved, for a fiducial set of free parameters, the problem of the formation and evolution of a magnetically supercritical core inside a magnetically subcritical parent cloud. The evolution was followed into the opaque phase that resulted in the formation of a hydrostatic protostellar core. In this paper we present a parameter study to assess the sensitivity of the results (1) to the density at which the equation of state becomes adiabatic; (2) to the initial mass-to-flux ratio of the parent cloud; and (3) to ionization by radioactive decay of different nuclei (K and Al) at high densities (nn & 10 12 cm). We find that (1) the results depend only slightly on the density at which the onset of adiabaticity occurs; (2) memory of the initial mass-to-flux ratio is completely lost at late times; and (3) the precise source of radioactive ionization alters the degree of attachment of the electrons to the field lines (at high densities), and the relative importance of ambipolar diffusion and Ohmic dissipation in reducing the magnetic flux of the protostar. The value of the magnetic field at the end of the runs is insensitive to the values of the free parameters and in excellent agreement with meteoritic measurements of the protosolar nebula magnetic field. The magnetic flux problem of star formation is resolved for at least strongly magnetic newborn stars. A complete detachment of the magnetic field from the matter is unlikely. The formation of a “magnetic wall” (with an associated magnetic shock) is independent of the assumed equation of state, although the process is enhanced and accelerated by the formation of a central hydrostatic core. Subject headings: ISM: clouds – ISM: dust – magnetic fields – MHD – stars: formation – shock waves

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment: I. Formulation of the Problem and Method of Solution

We formulate the problem of the formation of magnetically supercritical cores in magnetically subcritical parent molecular clouds, and the subsequent collapse of the cores to high densities, past the detachment of ions from magnetic field lines and into the opaque regime. We employ the six-fluid MHD equations, accounting for the effects of grains (negative, positive and neutral) including their...

متن کامل

Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment: Ii. Typical Axisymmetric Solution

We follow the ambipolar-diffusion–driven formation and evolution of a fragment in a magnetically supported molecular cloud, until a hydrostatic protostellar core forms at its center. This problem was formulated in Paper I. We determine the density, velocity and magnetic field as functions of space and time, and the contribution of ambipolar diffusion and Ohmic dissipation to the resolution of t...

متن کامل

Magneto-Hydrodynamics of Population III Star Formation

Jet driving and fragmentation process in collapsing primordial cloud are studied using three-dimensional MHD nested grid simulations. Starting from a rotating magnetized spherical cloud with the number density of nc ≃ 10 cm, we follow the evolution of the cloud up to the stellar density nc ≃ 10 cm. We calculate 36 models parameterizing the initial magnetic and rotational energies (γ0, β0). In t...

متن کامل

Magnetic Fields and Rotations of Protostars

The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (nc ≃ 10 4 cm, r = 4.6× 10 AU) to the stellar core (nc ≃ 10 22 cm, r ∼ 1R⊙), where nc and ...

متن کامل

Star Formation in Cold, Spherical, Magnetized Molecular Clouds

We present an idealized, spherical model of the evolution of a magnetized molecular cloud due to ambipolar diffusion. This model allows us to follow the quasi-static evolution of the cloud’s core prior to collapse and the subsequent evolution of the remaining envelope. By neglecting the thermal pressure gradients in comparison with magnetic stresses and by assuming that the ion velocity is smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007